Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo.
نویسندگان
چکیده
Head muscle progenitors in pharyngeal mesoderm are present in close proximity to cells of the second heart field and show overlapping patterns of gene expression. However, it is not clear whether a single progenitor cell gives rise to both heart and head muscles. We now show that this is the case, using a retrospective clonal analysis in which an nlaacZ sequence, converted to functional nlacZ after a rare intragenic recombination event, is targeted to the alpha(c)-actin gene, expressed in all developing skeletal and cardiac muscle. We distinguish two branchiomeric head muscle lineages, which segregate early, both of which also contribute to myocardium. The first gives rise to the temporalis and masseter muscles, which derive from the first branchial arch, and also to the extraocular muscles, thus demonstrating a contribution from paraxial as well as prechordal mesoderm to this anterior muscle group. Unexpectedly, this first lineage also contributes to myocardium of the right ventricle. The second lineage gives rise to muscles of facial expression, which derive from mesoderm of the second branchial arch. It also contributes to outflow tract myocardium at the base of the arteries. Further sublineages distinguish myocardium at the base of the aorta or pulmonary trunk, with a clonal relationship to right or left head muscles, respectively. We thus establish a lineage tree, which we correlate with genetic regulation, and demonstrate a clonal relationship linking groups of head muscles to different parts of the heart, reflecting the posterior movement of the arterial pole during pharyngeal morphogenesis.
منابع مشابه
Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium.
Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef...
متن کاملLineage tree for the venous pole of the heart: clonal analysis clarifies controversial genealogy based on genetic tracing.
RATIONALE Genetic tracing experiments and cell lineage analyses are complementary approaches that give information about the progenitor cells of a tissue. Approaches based on gene expression have led to conflicting views about the origin of the venous pole of the heart. Whereas the heart forms from 2 sources of progenitor cells, the first and second heart fields, genetic tracing has suggested a...
متن کاملGene regulatory networks and cell lineages that underlie the formation of skeletal muscle.
Skeletal muscle in vertebrates is formed by two major routes, as illustrated by the mouse embryo. Somites give rise to myogenic progenitors that form all of the muscles of the trunk and limbs. The behavior of these cells and their entry into the myogenic program is controlled by gene regulatory networks, where paired box gene 3 (Pax3) plays a predominant role. Head and some neck muscles do not ...
متن کاملFate map and cell lineage relationships of thoracic and abdominal mesodermal anlagen in Drosophila melanogaster
We have examined the cell lineage of larval and imaginal precursors of the mesodermal anlage between 10% and 60% egg length (EL) by homotopic single-cell transplantations at the blastoderm stage. Clones in the larval somatic muscles and in the fat body were derived from transplantations everywhere between 10% and 60% EL along the ventral side of the embryo. Clones frequently overlap these tissu...
متن کاملNK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field
The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 137 19 شماره
صفحات -
تاریخ انتشار 2010